
Enhancing the Distance Minimization Methods of Matrix Updating  

within a Homothetic Paradigm 

Vladimir Motorin 

National Research University Higher School of Economics, Moscow, Russian Federation 

motoriny@gmail.com 

Matrix updating methods are used for constructing the target matrix with the prescribed row and 
column marginal totals that demonstrates the highest possible level of its structural similarity to initial 
matrix given. A concept of structural similarity has a vague framework that can be slightly refined under 
considering a particular case of strict proportionality between row and column marginal totals for target 
and initial matrices with the same scalar multiplier. Here the question arises: can we accept the initial 
matrix homothety as optimal solution for proportionality case of matrix updating problem?  

In most practical situations an affirmative answer to the question is almost obvious. It is natural to 
call this common notion by homothetic paradigm and to refer its checking as homothetic testing. By virtue 
of homothetic paradigm, all matrices from the initial matrix homothetic family demonstrate an excellent 
structural similarity between each other. Some well-known and widely used methods for matrix updating 
serve as an additional instrumental confirmation to validity of homothetic paradigm proposed. It is shown 
that RAS method and Kuroda’s method pass through the homothetic test successfully. 

Homothetic paradigm can be helpful for enhancing a collection of matrix updating methods based 
on constrained minimization of the distance functions. From the viewpoint of the homothetic paradigm, 
one can set a goal to dispose the target matrix as close as possible not to initial matrix, but to its 
homothetic family in regular or relative coordinates. Main attention is paid to improving the methods with 
weighted squared difference (both regular and relative) as an objective function.  

As an instance of a failure in the homothetic testing, the GRAS method for updating the economic 
matrices with some negative entries is analyzed in details. A collection of illustrative numerical examples 
is given. 

Keywords: matrix updating methods, homothetic paradigm and testing, RAS and Kuroda’s methods, 
Kullback – Leibler divergence, methods of weighted squared differences, GRAS method 
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1. An introduction to the matrix updating problems 

A general problem of updating rectangular (or square) matrix can be formulated as follows. Let A 

be an initial matrix of dimension NM with row and column marginal totals MAeuA  , 

 where  and  are N1 and M1 summation column vectors with unit elements. AeN Ne MevA 

Further, let  and  be exogenous column vectors of dimension N1 and M1, Au Avv u 

respectively. The problem is to estimate a target matrix X of dimension NM at the highest 

possible level of its structural similarity (or resemblance, likeness, closeness, etc.) to initial 

matrix A subject to N+М equality constraints 

uXe M ,                e vX N

veue MN

,                                                  (1) 

and under the consistency condition  

  .                                                               (2) 
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It is assumed that initial matrix A does not include any zero rows or zero columns, does not 

have less than N+М nonzero elements, does not include any rows or columns with a unique 

nonzero element, and does not contain any pairs of rows and columns with four nonzero elements 

in the intersections. Otherwise, it is advisable to clean matrix A from those undesirable features 

before applying any matrix updating method in practice. 

Clearly, the system of equations (1) is dependent at consistency condition (2) that provides 

an existence of target matrix X. However, it is easy to show that any N+М–1 among N+М 

constraints (1) are mutually independent. Furthermore, it is evident that any feasible solution of 

matrix updating problem X can be simply transformed into another one by letting, e.g., 

 ijij xxnew imimnjnjnmnm xxxxxx newnewnew ,;,  

where  is an arbitrary scalar, or 

2, new  ikik xx2,;2,2, newnewnewnewnew  ijijimimnknknjnjnmnm xxxxxxxxxx , 

and so on. 

Thus, general problem of matrix updating significantly depends on a definition of the 

measure for structural similarity between initial and target matrices. Various definitions of this 

measure generate a great manifold of different methods and techniques for matrix updating. As 

Temurshoev et al. (2011, p. 92) rightly noted, “it is impossible to consider all updating methods, 

because theoretically their number is infinite”. 

2. A homothetic paradigm for the matrix updating methods 

A notion of structural similarity between initial and target matrices has a vague framework that 

can be slightly refined in an axiomatic manner. In this context, let us consider a particular case of 

strict proportionality between row and column marginal totals Auu k  and  for target 

and initial matrices with the same scalar factor k. Here the main question arises: can we accept 

Avv k

the matrix homothety  as optimal solution for proportionality case of a general matrix 

updating problem? At first sight this solution can be appreciated as rather logical and, moreover, 

it allows preserving in X the same location of zeros as in the initial matrix. However, it is to be 

emphasized that the above question indeed seems neither simple nor evident, and its proposition 

cannot be proved formally. 

AX k

Nevertheless, in most practical situations an affirmative answer to this question is almost 

obvious. In particular, as it is shown below, the well-known and widely used RAS and Kuroda’s 

methods for matrix updating serve as an additional instrumental confirmation to such an answer. 

In this connection, we will call this rather common notion by homothetic paradigm and will refer 

examining the property “if  and A Auu k vv k  then AX k ” as a homothetic test for the 
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matrix updating methods. It is advisable to propose that a successful passing through homothetic 

test were to be appreciated as a positive feature of any matrix updating method. 

3. Homothetic testing of RAS method 

The key idea of the RAS method is triple factorization of target matrix 

sArsAr ˆˆRASX                                                       (3) 

where r and s are unknown N1 and M1 column vectors. Here angled bracketing around a 

vector’s symbol or putting a “hat” over it denotes a diagonal matrix, with the vector on its main 

diagonal and zeros elsewhere (see Miller and Blair, 2009, p. 697). 

Putting (3) into (1), we have the system of nonlinear equations 

urAsAsresAr  ˆˆˆ M  ,            vrAssArsAre  ˆˆˆN . 

Proper transformations of this system lead to following pair of iterative processes: 

uvrA
11

)1(



 iAr )( i ,      i = 1I;           vrA
1

)()


 Is ( I ;                    (4) 

vuAs
11

)1(



jAs )( j ,       j = 1J;          uAs
1

)()


 Jr                      (5) ( J

where i and j are iteration numbers, and the character “  ” between the lower and upper bounds 

of index’s changing range means that the index sequentially runs all integer values in the 

specified range. 

As concerning a homothetic test for RAS method at Auu k  and , it can be easily 

shown that under starting condition r

Avv k

Ne)0(  or s Me)0(  the RAS method iterative process (4) or 

(5) demonstrates one-step convergence to pair of vectors Ner  , Mkes   or to , Nker  Mes  , 

respectively. Hence, RAS algorithm’s implementation gives  ksmnr   for any n and m, n = 1N, 

m = 1M, from which AAsr kX   where the character “  ” denotes the Hadamard’s 

(element-wise) product of two matrices with the same dimensions. Besides, it is easy to see that 

replacing the initial matrix A with its homothety kA leaves the RAS method iterations (4) and (5) 

invariant. Thus, the RAS method passes through a homothetic test successfully. 

For more formal proof of this fact, notice that the RAS method is associated with a 

conditional minimization of non-negative function called the Kullback – Leibler divergence that 

can be used for comparing “true” and “test” probability distributions (see Kullback and Leibler, 

1951). This function actually expresses the difference between the cross-entropy of two 

distributions and the entropy of “true” probability distribution.  

Let the “true” distribution be X/x, and let the “test” one be A/a, where MNa Aee  and 
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MNx Xee . (So all elements of X and A are implied to be non-negative.) In these denotations 

the Kullback – Leibler divergence (sometimes called “information gain”) can be written as 

x

a
ln);(KL AX

);(fKL AX

xa

x

x

a

x

x
ax

N

n

M

m nm

nmnm f
1

ln);(f
1 1

KL 







 

 

AX                         (6) 

where  is corresponding Kullback – Leibler function for non-normalized data. The 

function  often serves as an objective function in mathematical programming );(fKL AX

formulation of the RAS method instead of );(fKL ax AX , e.g., in Appendix 7.1 “RAS as a 

Solution to the Constrained Minimum Information Distance Problem” to Miller and Blair (2009). 

To be fair, the Kullback – Leibler divergence (6) is not a distance function really because the 

symmetry and triangle inequality conditions do not hold for it. 

Indeed, let us consider the conditional minimization problem with objective function (6) 

and linear constraints (1) under the consistency requirement xMNMN  Xeeveue . The 

Lagrangean function for this problem is just 

 
 











N

n
mnmm vx

1 1

λ μ

 
  











M

m

N

n

M

m
nnmn

N

n

M

m nm

nm
nm ux

x

a

a

x
x

x 1 11 1
KL lnln

1
),;(L μλX  

where  and  are the column vectors of Lagrange multipliers with dimensions N1 and M1 

respectively. 

The first partial derivatives of Lagrangean function with respect to xnm are 

 ln1ln
1LKL 




nm
nm

ax
xx

 0 mnnm ,     n = 1N,  m = 1M, 

from which it is easy to obtain the RAS triple factorization of target matrix (3) as follows: 

 
mnmn sarm  21x

nm
xx

nmnm eaeeax nmn   211
 

where e is the base of natural logarithms. 

Thus, the RAS method’s logical emanation from the Kullback – Leibler divergence 

minimization approach is proved. 

Finally, it is easy to see that in homothetic testing with AX k  the non-negative function 

(6) reaches its absolute minimum value, since 

  01ln 



ka

ka
ln);(f

1 1
KL 




 

  a

ka

ka

a

ka

ka
akak

N

n

M

m nm

nmnmAA . 

It means that, from viewpoint of the Kullback – Leibler divergence minimization approach 

together with the RAS method, the matrix homothety AX k  can be considered as optimal 

solution for proportionality case of a general matrix updating problem. 
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4. Homothetic testing of Kuroda’s method 

Kuroda (1988) proposed an original method for matrix updating that comes to constrained 

minimization of the twofold-weighted quadratic objective function 


  











N

n

M

m
NM

N

n

M

m n

nm

n

nm
NM w

u

a

u

x
w

1 1

2

1 1

1
K 2

1

2

1
);(f

A
AX 










m

nm

m

nm

v

a

v

x
22

A
, 

which can be rewritten in matrix form as 

  vv xWx 22

1 

1 2W

u v

uuvu xWxxx 1K 2

1
,f                                       (7) 

where W  and  are the nonsingular diagonal matrices of order NM  with the relative reliability 

or relative confidence factors (weights). Here the NM-dimensional column vectors x  and x  are 

defined through applying the vectorization operator “vec”, which transforms a matrix into a 

vector by stacking the columns of the matrix one underneath the other (see, e.g., Magnus and 

Neudecker, 2007), as follows: 

   aUUx AA  11 uXux Au  ˆˆvec  ,          aVVx AA  11

a 1AU NEvV AA  1ˆ

x  NEvV  1ˆ

vAvXxv  ˆˆvec  

where 

Avec ,            ,            , ˆ AuEM

1Xvec ,            U  ,            , ˆuEM

ME  is an identity matrix of order M, and the character “  ” denotes the Kronecker product of 

two matrices. 

Within a homothetic test for Kuroda’s method, the row and column marginal totals for 

target matrix are u Auk  and , hence  Avv k






 axUA k

1
 aUUxx Au  ,            






  axVaVVxx AAv k

1
. 

Therefore, at  the vectors x  and  vanish both, and the quadratic function (7) akx u vx

reaches its absolute minimum value equal to zero. It means that from viewpoint of Kuroda’s 

method, the matrix homothety AX k  provides the optimal solution for a general problem of 

matrix updating in a case of strict proportionality between row and column marginal totals for 

target and initial matrices. Thus, Kuroda’s method passes through a homothetic test successfully 

as well as RAS method. 

5. Homothetic test’s failure: the method of weighted squared differences (WSD) 

A quite common approach to define a measure of the structural similarity between initial and 

target matrices is to use some matrix norm for the difference AX   to be minimized subject to 
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linear constraints (1) under the consistency condition (one can find the proper reviews, e.g., in 

Miller and Blair, 2009 and Temurshoev et al., 2011), so that the optimal solution can be 

represented as AX
X

minargX  , or in equivalent vector form as ax
x

 minarg

Xvec

x  where 

 and x  are the column vectors of dimension NM1.  Aa vec 

For instance, the choice of Frobenius matrix norm (and compatible euclidean vector norm) 

leads to the constrained minimization of weighted quadratic objective function 

ax  
 

N

n

M

m
nmnmnm axw

1 1
WSD );(    xWax 2

1

af                              (8) 

where W is a nonsingular diagonal matrix of order NM with the relative reliability or relative 

confidence coefficients. (Usually the elements of matrix W is assumed to be normalized by 

multiplying it on a proper factor, i.e.,  NMNM Wee .) To complete a formulation of the 

constrained minimization problem for the WSD method, one needs to rewrite left-hand sides of 

the constraints (1) in vector denotations. Introducing the NNM matrix G , which 

consists of M identity matrix  located horizontally, and the MNM matrix 

NM Ee 

NeEHNE  M

GxXe

, which 

is N-fold successive replication of each column from identity matrix , we have ME

uM vHxeX,                   N .                                   (9) 

Notice that each column of G and H includes exactly one nonzero (unit) element such that 

. NMMN eHeGe 

The Lagrangean function for problem of minimizing the objective function (8) subject to 

linear constraints (9) is just 

    GxλaxWaxμλx    vHxμu ),,(LWSD  

where  and μ  are the column vectors of Lagrange multipliers, as earlier. Taking the first partial λ

derivatives of this function with respect to x,  and μ  gives λ

λG axW NM0μH 2 ,         N0uGx  ,        . M0vHx 

Expressing x from first equation of this system, we obtain the problem solution as a function of 

Lagrange multipliers, namely 

 μHλGW 1

λ

ax 
2

1
.                                                (10) 

Inserting (10) into the second and third equations leads to following system of equations with  

and μ  as unknowns: 

 
 HavμH

GauμH





2

,2

HWλGHW

GWλGGW








11

11

                                        (11) 
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Au AvHa 

GW MeHHW 1
NMMN eeHe

where Ga  and . 

Note that the main matrix of the system (11) is symmetric. Moreover, it is easy to see that 

 and  because of NM 0eH 1
NeGHW 1

NeGGW 1
M0 G   , 

i.e., the matrix of the system (11) has the linearly dependent columns and so is singular. Thus, the 

general solution to corresponding  homogeneous system (11) is  
Nceλ 0  μ 0,  with any Mce

scalar constant c.  

Since a general solution to nonhomogeneous linear system equals the sum of a general 

solution to corresponding  homogeneous system and any particular solution to nonhomogeneous 

system, let  and    10 λλ     λ 10 μμμ  , where the pair  1λ ,  1μ  is a particular solution to 

system (11). Putting these formulas into round-bracketed expression in the right-hand side of (10) 

gives 

             11 μHλG 1111 μHλGeeμeHλeGμHλG  NMNMMN cccc , 

i.e., the optimal solution of minimization problem (8), (9) depends only on a particular solution to 

nonhomogeneous system (11).  

As noted above, any N+М–1 among N+М constraints (9) are mutually independent while 

. Therefore, the Lagrange multipliers  and  can be determined from reduced 

system of linear equations (11) with any one of them eliminated (of course, with setting a 

corresponding multiplier equal to zero). 

veue MN  λ μ

For homothetic testing the WSD method, suppose that ax k . Inserting this homothety 

into the solution (10) leads to the condition 

Waμ )1(2HλG  k  

which is not met at N+M >3 because it actually represents a generally unsolvable system of NM 

linear equations with N+M–1 unknown Lagrange multipliers (recall that one of them equals 

zero). Hence, the vector  cannot be an optimal solution of minimization problem (8), (9) at 

 and v . 

ax k

uk AvkAu 

Thus, WSD method does not pass through a homothetic test in contrast to RAS and 

Kuroda’s method. 

6. Applying homothetic paradigm for improving the WSD method  

Acceptance of the matrix  as optimal solution for proportionality case of a general matrix AX k

updating problem leads to establishing the fact that all matrices from homothetic family  Ak

demonstrate an excellent structural similarity between each other. The homothetic paradigm can 

be helpful for enhancing a collection of matrix updating methods based on constrained 
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minimization of the distance (or quasi-distance) functions. 

Within homothetic paradigm we can set a goal to dispose the target matrix as close as 

possible not to initial matrix A, but to its homothetic family kA. As a result, the optimal solution 

becomes   AX
X

k
k


,

minargX k , , or in equivalent vector form   ax
x

k
k


,

minargx k , , and, 

clearly, it cannot be “worse” (in terms of the certain matrix/vector norm chosen) than the original 

one. As it is shown below, transition from ax  to ax k  leads to an idea of orthogonal 

projecting an unknown target vector x onto the homothetic ray ka in NM-dimensional vector 

space with scalar product operation. 

In the case of WSD method, the improved version of weighted quadratic objective function 

(8) can be written as 

  xax laxwl
N

n

M

m
nmnmnm  

 1 1

2
iWSD );,(f    axWa ll                     (13) 

where l is an additional scalar variable.  

The Lagrangean function for problem of minimizing the objective function (13) subject to 

linear constraints (9) becomes 

    GxλaxWaxμλx    vHxμu  lll ),,,(LiWSD  

where, as earlier,  and  are the column vectors of Lagrange multipliers. Taking the first partial λ μ

derivatives of this function with respect to vector x and scalar l gives the following system of 

NM+1 equations: 

 laxW NM0μ   0HλG 2 ,               axWa l  

where the second equation is being interpreted as an orthogonality condition for vectors ax l  

and a.  

Expressing x from first equation of this system, we obtain the solution of problem (13), (9) 

as a function of Lagrange multipliers, namely 

 μHλGW 1

λ μ

vμHHW

uμHGW

μHa

2

,2

,0

1

1





ax 
2

1
l .                                                  (14) 

Inserting (14) into second equation of above system and into the constraint equations leads to 

following system of 1+N+M equations with l,  and  as unknowns: 

λGHWHa

λGGWGa

λGa

2

2
1

1















l

l                                             (15) 

where  and . Since any N+М–1 among N+М constraints (9) are mutually A AvHa uGa
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veue MN independent while  , the scalar l and Lagrange multipliers ,  can be determined 

from reduced system of linear equations (15) with any one of them eliminated (except first 

equation) with setting a corresponding multiplier equal to zero. 

λ μ

Putting the improved WSD method to homothetic test, suppose that . Inserting this ax k

formula into the orthogonality condition gives    0 Waak kl l  from which . In turn, 

substituting the homothety into (14) leads to the homogeneous system 

NM0μHλG   

that obviously has the solution ,  where c is an arbitrary scalar (see Section 

5). Further, at u ,  and  the linear equations (15) are also being transformed to 

Nce Mceμ 

 k

λ 

Avk lAuk v

the homogeneous system 

 
 
  0μHλG

μHλG

μHλG





M

N

HW

GW

a





1

1 0







,

,0

 

with the same simple solution. Therefore, the vectors , ,  bring the ak λ x 
Nce Mceμ 

optimal solution to the problem of minimizing the objective function (13) subject to linear 

constraints (9) at Auku   and . Avv k

Thus, the improved WSD method passes through a homothetic test successfully as well as 

RAS and Kuroda’s method (and in contradistinction to WSD method). 

7. Analyzing and improving the method of weighted squared relative differences (WSRD) 

To make the minimization problems (8), (9) and (13), (9) independent on scale of initial data, it is 

expedient to let  

qax ˆ                                                                     (16) 

where q is NM-dimensional column vector of unknown relative coefficients, and then to 

introduce into consideration the relative distance functions, namely NMeq  instead of ax   

for WSD method and NMekq  instead of akx   for improved WSD method. Here the 

transition from NMeq  to NMkeq , as it is shown below, leads to an idea of orthogonal 

projecting an unknown target vector q onto the homothetic ray  in NM-dimensional vector NMke

space with scalar product operation. Notice that the equation (16) cannot be resolved with respect 

to q if the initial matrix A contains at least one zero entry. 

In transition from WSD to WSRD method, the quadratic objective function (8) becomes 
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  NMeqW    NM

N

n

M

m
nmnmnmNM eqw eqeq  

 1 1

2
WSRD );(f                   (17) 

whereas the improved objective function (13) is being transformed to 

  NM

N

n

M

m
nmnmnmNM lleqwl eqeq 

 1 1

2
iWSRD );,(f    NMleqW 

aGGx

,            (18) 

and, finally, inserting (16) into the linear constraints (9) leads to the following modified 

constraints: 

uq  ˆ vqaHHx,                  ˆ .                                   (19) 

The objective function (17) was first proposed by Harthoorn and van Dalen (1987) with the 

relative confidence coefficients matrix factorized as  where w is exogenous vector of awaW ˆˆˆ 1

reciprocal weights for the elements of initial vector a. The Lagrangean function for problem of 

minimizing the objective function (17) subject to linear constraints (19) is just  

     uqaGλeqWeqμλq    vqaHμ  ˆ),;(LWSRD NMNM ˆ

λ μ

, 

where  and  are the column vectors of Lagrange multipliers, as earlier. 

By analogy with derivation of (10) and (11) in Section 5 we obtain 

 μHλGaW  ˆ1eq 
2

1
NM                                                (20) 

and 

 
 Havμ

Gauμ





2

,2

Au AvHa

HaWaHλGaWaH

HaWaGλGaWaG








ˆˆˆˆ

ˆˆˆˆ
11

11

                                     (21) 

where, as earlier, Ga  and   . It is easy to see that the system of linear equations (21)  

is the degenerate one, resembling (11), and its corresponding  homogeneous system also has the 

general solution ,  with any scalar constant c. Since any N+М–1 among 

N+М constraints (19) are mutually independent while 

  ceλ 0
N

 
Mceμ 0

veue MN  , the Lagrange multipliers  

and  can be determined from reduced system of linear equations (21) with any one of them 

eliminated  with setting a corresponding multiplier equal to zero. 

λ

μ

For homothetic testing the WSRD method, suppose that q NMke . Inserting this homothety 

into the solution (20) leads to the condition 

 μHλGâ NMk We)1(2   

which is not met at N+M >3 because it actually represents a generally unsolvable system of NM 

linear equations with N+M–1 unknown Lagrange multipliers (one of them equals zero because 

the matrix of system (21) has non-full rank). Hence, the vector NMkeq   cannot be an optimal 
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solution of minimization problem (17), (19) at Auu k  and Avv k . Thus, WSRD method does 

not pass through a homothetic test as well as WSD method. 

The objective function (18) demonstrates a result of applying a homothetic paradigm to the 

objective function of WSRD method (17). The Lagrangean function for problem of minimizing 

the improved objective function (18) subject to linear constraints (19) is just  

     uqaGλeqWeqμλq    vqaHμ  ˆ),;,(LiWSRD NMNM lll ˆ , 

where  and  are the column vectors of Lagrange multipliers, and l is an additional scalar λ μ

variable.  

Taking the first partial derivatives of this function with respect to vector q and scalar l 

gives the following system of NM+1 equations: 

 NMl GaeqW NM0μ Haλ  ˆ2 ˆ ,              0 NMleqWNMe  

where the second equation of the system expresses an orthogonality condition for vectors 

 and .  NMle NMeq

By analogy with derivation of (14) and (15) in Section 6 we obtain 

 μHλGaW  ˆ1

vμHaW

uμHaW

μHa

2ˆ

,2ˆ

,0

1

1





eq 
2

1
NMl                                                 (22) 

and 

aHλGaWaHHa

aGλGaWaGGa

λGa

ˆˆˆ2

ˆˆˆ2
1

1





 









l

l                                    (23) 

where  and . Since any N+М–1 among N+М constraints (19) are mutually 

independent while 

A AvHa 

veue MN 

uGa

 , the scalar l and Lagrange multipliers ,  can be determined 

from reduced system of linear equations (23) with any one (except first one) of them eliminated 

with setting a corresponding multiplier equal to zero. 

λ μ

Putting the improved WSRD method to homothetic test, suppose that . Inserting NMkeq 

this formula into the orthogonality condition gives   0 NMNM Welk e kl  from which . In 

turn, substituting the homothety into (22) leads to the homogeneous system 

  NM0μHλGa  ˆ  

that obviously has the solution ,  where c is an arbitrary scalar (see Section 

6). Further, at u ,  and  the linear equations (23) are also being transformed to 

Nce Mceμ 

 k

λ 

Avk lAuk v

the homogeneous system 
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 
 
  M

N

0μHλG

0μHλG

μHaλ





aWaH

aWaG

Ga 





ˆˆ

ˆˆ
1

1

0

 

with the same simple solution. Therefore, the vectors , ,  bring the NMke λ q 
Nce Mceμ 

optimal solution to the problem of minimizing the objective function (18) subject to linear 

constraints (19) at Auku   and . Avv k

Thus, the improved WSRD method passes through a homothetic test successfully as well as 

improved WSD method (and in contrast to WSRD method). 

8. Handling the zero entries in the distance minimization methods of matrix updating 

In practice, an initial matrix often contains some zero elements. In this context, all matrix 

updating methods can be divided into two groups: those that do preserve the same location of 

zeros in target matrix as in the initial one, and those that do not. For example, RAS method 

should be assigned to the first group because of its multiplicative pattern (3) whereas Kuroda’s 

method belongs to the second group because it does not include any mechanisms for fitting the 

proper elements of target matrix to required zero level. Analogically, the regular and improved 

WSRD are methods of the first group because they are based on multiplicative pattern (16) in 

contradistinction to the WSD method both regular and improved. 

If a zero preservation property is assumed desirable, the WSD methods can be slightly 

redeveloped to provide it by reducing the dimensionalities of minimization problems (8), (9) and 

(13), (9). Let J < NM be a number of nonzero elements in the initial matrix A (and in NM-

dimensional vector a). While the zero preservation principle “if  0ja 0jx then  for any j” is 

being applied, the target vector x does really contain only J unknown variables because the other 

NM – J  variables should be setting to zero values. Hence, it is advisable to reduce the operational 

dimensions of initial and target vectors from NM1 to J1 by eliminating NM – J zero 

components. 

Let E  be a rectangular matrix with dimensions JNM that is obtained from an identity NMJ

matrix of order NM by deleting the rows corresponding to zero entries in the initial vector. Then 

the initial and target vectors can be redefined as 11  NMNMJ aE JxJa 11   NMNMJ xE and . In 

turn, in order to make the formulas of objective functions for WSD and improved WSD methods 

(8) and (13) be operational, one needs also to redefine the weight matrix W by deleting the 

corresponding rows and columns, i.e., NMJNMNM NMJJJ   EWEW . 

Finally, it is necessary to adapt the linear constraints (9) to reduced dimension of the target 
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vector. To this end, NNM-dimensional matrix G and MNM-dimensional matrix H must be 

postmultiplied by  in order to eliminate their redundant columns. Hence the constraints (9) 

are being transformed to 

NMJE

 11   NJ ux NMJ 11  NMN EG  and  MJNMJ vxNMM EH , respectively, 

where all dimensions are consistent in a sense of matrix product. Notice that, as earlier, each 

column of the transformed matrices includes exactly one nonzero (unit) element so that 

JJMMJ eHe  NNGe  . Thus, the redevelopment of regular and improved WSD methods comes 

to proper reducing the dimensions of all vectors and matrices in the minimization problems (8), 

(9) and (13), (9) without their reformulation. 

Furthermore, Kuroda’s method can be modified for preserving the zeros in a similar way. 

As noted earlier, the regular and improved WSRD methods provide the same location of 

zeros in target matrix as in the initial one. Despite of it, the eliminating procedure described 

above seems to be helpful for them also because the operation of excluding zero elements allows 

decreasing the dimension of solution space for the matrix updating problem in significant degree. 

It is to be emphasized that macroeconomic matrices of high dimensions often appear to be very 

sparse in practice, up to more than 90% of zero elements. In such cases, the efficiency of 

computations within the minimization problems (17), (19) and (18), (19) increases rather 

noticeably. 

9. Another failure of homothetic testing: GRAS method  

The regular WSD and WSRD methods do not satisfy a homothetic test originally but can be 

improved by applying a homothetic paradigm. However, some methods of matrix updating 

demonstrate an incorrigible failure of homothetic testing. For instance, the generalized RAS 

(GRAS) method does not pass through a homothetic test and at the same time cannot be 

enhanced in this sense because of its nature. 

As it is well-known, “… RAS can only handle non-negative matrices, which limits its 

application to SUTs that often contain negative entries…” – see Temurshoev et al. (2011, p. 92). 

The GRAS method has been proposed by Junius and Oosterhaven (2003) for the initial matrices 

with some negative entries, and later it was redeveloped by Lenzen et al. (2007). Notice that in 

the absence of negative entries GRAS method coincides with RAS method. 

Any initial matrix A can be represented as QPA   where P is a matrix of positive 

entries and Q is a matrix containing the absolute values of negative entries. The GRAS method 

leans on multiplicative pattern  

11 ˆˆˆˆ  sQrsPrX                                                         (24) 

where r and s are unknown N1 and M1 column vectors that are needed to be estimated subject 
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to linear constraints (9). 

For homothetic testing the GRAS method, suppose that QPAX kkk  . Inserting this 

homothety into the pattern (24) leads to a following pair of matrix equations: 

PsP kr ˆˆ ,              QsQ
k

1
ˆˆ r . 

The transition to Hadamard’s products in the left-hand sides of these equations gives 

  PP ksr   ,            QQsr
k

1
 

ksr

 

from which it follows that 

MNee  ,                MNk
ees 

1

MN ee 

1

r                                        (25) 

where  is outer product of two summation vectors, i.e., the matrix of dimension NM with 

unit elements.  

It is easy to see that the conditions (25) are met simultaneously if and only if k , or 

AX  QPA kkk. Hence, the matrix homothety X   cannot be a feasible solution for 

GRAS method at 1k . Thus, the GRAS method does not pass through a homothetic test.  

The strict structure of multiplicative pattern (24) does not give opportunities for improving 

the GRAS method on the base of homothetic paradigm without its redevelopment. Here the main 

problem seems to be an inexact correspondence between GRAS method’s objective function and 

Kullback – Leibler divergence that Lemelin (2009) has rightly pointed out. Indeed, if initial 

matrix A contains some negative entries, then by virtue of the Kullback – Leibler probabilistic 

interpretation the function (6) can be rewritten as 
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ijx
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ijaa

1 1

veue MNx . Notice that now a value of   is not 

known a priori in contrast to the case (6) in which all initial matrix entries are implied to be non-

negative. 

Factorizing the unknown variables in (26) as nmnmnm zax  , one can introduce the new 

variables z  and obtain the following nonlinear objective function: nm
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n
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nmnm uza 
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nmnm vza 

1

that should be minimized subject to the linear marginal total constraints 

,  n = 1N,           ,  m = 1M.                       (28) 

It is interesting to compare three summands in right-hand side of (27) with two summands 

of the GRAS method’s objective function 
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that was being considered at Lenzen et al. (2007). Note that the first summand in right-hand side 

of (29) is just the GRAS objective function that has been originally proposed by Junius and 

Oosterhaven (2003). It is important to emphasize that nonlinear minimization problem (27), (28) 

is much more complicated computationally than the GRAS problem of minimizing the objective 

function (29) subject to constraints (28). It appears that the problem (27), (28) deserves a further 

analytical examination. 

In turn, it is easy to see that in homothetic testing with AX k  and MNk eeZ   the non-

negative objective function (27) reaches its absolute minimum value, since 

0lnln  aalnlnlnln
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It means that, from viewpoint of the Kullback – Leibler divergence minimization approach, the 

matrix homothety  can be classified as optimal solution for proportionality case of a AX k

general matrix updating problem. Thus, the redeveloped GRAS method based on minimization 

problem (27), (28) passes through a homothetic test successfully. 

10. Numerical examples and concluding remarks 

Consider the Eurostat input–output data set given in “Box 14.2: RAS procedure” (see Eurostat, 

2008, p. 452) for compiling some numerical examples. The 34-dimensional initial matrix A 

combines the entries in intersections of the columns “Agriculture”, “Industry”, “Services”, “Final 

d.” with the rows “Agriculture”, “Industry”, “Services” in “Table 1: Input-output data for year 

0”. Note that all the elements of this matrix are positive. The row marginal total vector u of 

dimension 31 is the proper part of the column “Output” in “Table 2: Input-output data for year 

1”, and the column marginal total vector v  of dimension 14 involves the proper entries of the 

row “Total” in the near-mentioned data source.  

Initial matrix A and target marginal totals u, v  are marked by bold font in the left half and 

in the right half of Table 1, respectively. The results of handling the data from Table 1 by RAS 
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method with iterative processes (4) or (5) and by Kuroda’s method (KM) of conditional 

minimizing the quadratic objective function (7) with NMNMNMNM eEeEWW  21

A Au X u

 subject to 

the linear marginal total constraints (9) are grouped in Table 2. The next two numerical examples 

demonstrate the results of applying the WSD and improved WSD methods as well as WSRD and 

improved WSRD methods for updating the available data set (see Table 3 and 4, respectively). 

The calculated target matrices seem to be very close among themselves. 

Table 1  Initial matrix and target marginal totals, Eurostat (2008), p. 452 

Year 0      Year 1      

 20.00 34.00 10.00 36.00 100.00  19.16 33.38 10.14 32.10 94.78 

 20.00 152.00 40.00 188.00 400.00  18.32 158.16 41.36 195.02 412.86

 10.00 72.00 20.00 98.00 200.00  9.80 76.48 22.08 104.32 212.68

Av v 47.28 268.02 73.58 331.44 720.32 50.00 258.00 70.00 322.00 700.00

Table 2  RAS and KM results for updating the data set from Table 1 

RAS X Xu u X Xu u      KM       
 17.94 32.77 9.76 34.31 94.78 94.78  18.79 32.20 10.01 33.78 94.78 94.78 

 19.36 158.08 42.12 193.30 412.86 412.86  18.91 158.41 42.18 193.35 412.86 412.86

 9.98 77.17 21.70 103.84 212.68 212.68  9.57 77.41 21.38 104.31 212.68 212.68

Xv Xv 47.28 268.02 73.58 331.44 720.32   47.28 268.02 73.58 331.44 720.32  

v v 47.28 268.02 73.58 331.44  720.32 47.28 268.02 73.58 331.44  720.32

Table 3  WSD and iWSD results for updating the data set from Table 1 

WSD X Xu u X Xu u      iWSD       
 16.10 34.34 8.20 36.15 94.78 94.78  17.40 33.68 8.91 34.80 94.78 94.78 

 20.62 156.86 42.72 192.67 412.86 412.86  19.25 157.73 41.83 194.05 412.86 412.86

 10.57 76.82 22.67 102.62 212.68 212.68  10.63 76.62 22.85 102.59 212.68 212.68

Xv Xv 47.28 268.02 73.58 331.44 720.32   47.28 268.02 73.58 331.44 720.32  

v v 47.28 268.02 73.58 331.44  720.32 47.28 268.02 73.58 331.44  720.32

Table 4  WSRD and iWSRD results for updating the data set from Table 1 

WSRD X Xu u X Xu u      iWSRD       
 18.39 32.40 10.00 33.99 94.78 94.78  18.35 32.41 10.03 33.99 94.78 94.78 

 19.06 158.84 42.66 192.29 412.86 412.86  19.07 158.82 42.60 192.37 412.86 412.86

 9.83 76.77 20.92 105.16 212.68 212.68  9.86 76.79 20.95 105.08 212.68 212.68

Xv Xv 47.28 268.02 73.58 331.44 720.32   47.28 268.02 73.58 331.44 720.32  

v v 47.28 268.02 73.58 331.44  720.32 47.28 268.02 73.58 331.44  720.32

The following numerical example is assigned to verify a response of WSD and WSRD 

methods to homothetic testing at k = 5 (see Table 5). It is easy to see that the WSD target matrix 

does distinct from 5A very significantly whereas the difference between the WSRD target matrix 

and 5A is noticeably less. 

Futhermore, the several numerical examples is intended for testing some methods’ response 
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to zero entries in the initial matrix. So let us disturb two elements of initial matrix A in Table 1, 

say (1, 3) and (2, 1), by putting it equal to zero for years 0 and 1. After recalculation of the 

marginal totals we get the data set in the left and right halves of Table 6 (initial matrix A and 

target marginal totals u,  are marked by bold font; zero entries are underlined). v

Table 5  WSD and WSRD homothetic test results for the data set from Table 1 at k = 5 

WSD AX 5 Xu
Au5 AX 5     WSRD     Xu

Au5  

 -46.67 244.67 -30.00 332.00 500.00 500.00  127.17 166.38 31.17 175.28 500.00 500.00

 253.33 662.67 300.00 784.00 2000.00 2000.00  92.17 775.80 238.68 893.36 2000.00 2000.00

 43.33 382.67 80.00 494.00 1000.00 1000.00  30.66 347.82 80.15 541.36 1000.00 1000.00

Xv Xv 250.00 1290.00 350.00 1610.00 3500.00   250.00 1290.00 350.00 1610.00 3500.00  

Av5 Av 250.00 1290.00 350.00 1610.00  3500.00 5 250.00 1290.00 350.00 1610.00  3500.00

Table 6  Initial matrix with zero entries and target marginal totals 

Year 0 A Au X u     Year 1      

 20.00 34.00 0.00 36.00 90.00  19.16 33.38 0.00 32.10 84.64 

 0.00 152.00 40.00 188.00 380.00  0.00 158.16 41.36 195.02 394.54

 10.00 72.00 20.00 98.00 200.00  9.80 76.48 22.08 104.32 212.68

Av v 28.96 268.02 63.44 331.44 691.86 30.00 258.00 60.00 322.00 670.00

The left parts of Table 7, Table 8 and Table 9 contain the target matrices calculated by 

methods that are not based on any multiplicative pattern, namely, WSD and improved WSD as 

well as Kuroda’s method, respectively. It is easy to check that they do not really preserve the 

same location of zeros in target matrix as in the initial one. In contrast, the right parts of Table 

7 – 9 present the results of additional applying the proposed procedure of reducing the dimension 

of solution space in the matrix updating problem described in Section 8 (with the letters “rd” after 

an abbreviation of method's title). 

Table 7  WSD and WSDrd results for updating the data set from Table 6 

WSD X Xu u X Xu u      WSDrd       
 16.49 34.18 -2.02 35.99 84.64 84.64  16.64 33.09 0.00 34.90 84.64 84.64 

 1.47 157.15 42.96 192.96 394.54 394.54  0.00 158.16 42.42 193.97 394.54 394.54

 11.00 76.69 22.50 102.50 212.68 212.68  12.32 76.77 21.02 102.57 212.68 212.68

Xv Xv 28.96 268.02 63.44 331.44 691.86   28.96 268.02 63.44 331.44 691.86  

v v 28.96 268.02 63.44 331.44  691.86 28.96 268.02 63.44 331.44  691.86

Table 8  iWSD and iWSDrd results for updating the data set from Table 6 

iWSD X Xu u X Xu u      iWSDrd       
 18.13 33.47 -1.51 34.55 84.64 84.64  17.57 33.00 0.00 34.07 84.64 84.64 

 -0.39 158.17 42.24 194.53 394.54 394.54  0.00 158.37 41.44 194.74 394.54 394.54

 11.22 76.38 22.72 102.36 212.68 212.68  11.39 76.65 22.00 102.64 212.68 212.68

Xv Xv 28.96 268.02 63.44 331.44 691.86   28.96 268.02 63.44 331.44 691.86  

v v 28.96 268.02 63.44 331.44  691.86  28.96 268.02 63.44 331.44  691.86
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X Xu u X Xu u

Table 9  KM and KMrd results for updating the data set from Table 6 

KM       KMrd       
 19.22 31.98 -0.15 33.58 84.64 84.64  19.23 31.91 0.00 33.51 84.64 84.64 

 0.02 158.62 42.28 193.62 394.54 394.54  0.00 158.67 42.20 193.67 394.54 394.54

 9.72 77.42 21.31 104.23 212.68 212.68  9.73 77.45 21.24 104.26 212.68 212.68

Xv Xv 28.96 268.02 63.44 331.44 691.86   28.96 268.02 63.44 331.44 691.86  

v v 28.96 268.02 63.44 331.44  691.86 28.96 268.02 63.44 331.44  691.86

The several numerical examples are assigned to test some methods’ response to negative 

entries in the initial matrix. So let us disturb two elements of initial matrix A in Table 1, say the 

same (1, 3) and (2, 1), by reversing their sign for years 0 and 1. After proper recalculation of the 

marginal totals we obtain the data set in the left and right halves of Table 10 (initial matrix A and 

target marginal totals u,  are marked by bold font; negative matrix elements are underlined). v

The halves of Table 11, Table 12 and Table 13 contain the target matrices calculated by 

methods that, in contrast to RAS, can be used in presence of negative entries, namely, WSD and 

improved WSD methods, WSRD and improved WSRD methods, Kuroda’s method and GRAS 

method, respectively. It is easy to see that they are all quite acceptable at small values of relative 

difference   aax  ; in particular, for the data set from Table 10 

      %7.3640 6404.663  AA ueueue NNNaax . 

Setting the new target marginal totals, say, by doubling them, i.e., 

      %3.107640 6401326.82  AA ueueue NNNaax , 

we obtain new target matrices calculated by the same methods; they are located in Table 14 – 16. 

It is to be emphasized that only the iWSD, iWSRD methods and Kuroda’s method show 

acceptable results here whereas the WSD, WSRD and GRAS methods are not good at all. Recall 

that exactly these methods do not satisfy a homothetic test (see Sections 5, 7 and 9 respectively). 

Table 10  Initial matrix with negative entries and target marginal totals 

Year 0 A Au X u     Year 1      

 20.00 34.00 -10.00 36.00 80.00  19.16 33.38 -10.14 32.10 74.50 

 -20.00 152.00 40.00 188.00 360.00  -18.32 158.16 41.36 195.02 376.22

 10.00 72.00 20.00 98.00 200.00  9.80 76.48 22.08 104.32 212.68

Av v 10.64 268.02 53.30 331.44 663.40 10.00 258.00 50.00 322.00 640.00

Table 11  WSD and iWSD results for updating the data set from Table 10 

WSD X Xu u X Xu u      iWSD       
 16.89 34.02 -12.23 35.82 74.50 74.50  18.87 33.28 -11.96 34.32 74.50 74.50 

 -17.68 157.45 43.21 193.25 376.22 376.22  -20.05 158.60 42.68 194.99 376.22 376.22

 11.43 76.56 22.32 102.37 212.68 212.68  11.83 76.14 22.58 102.13 212.68 212.68

Xv Xv 10.64 268.02 53.30 331.44 663.40   10.64 268.02 53.30 331.44 663.40  

v v 10.64 268.02 53.30 331.44  663.40  10.64 268.02 53.30 331.44  663.40
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X Xu u X Xu u

Table 12  WSRD and iWSRD results for updating the data set from Table 10 

WSRD       iWSRD       
 19.74 31.68 -10.08 33.16 74.50 74.50  19.97 31.71 -10.37 33.20 74.50 74.50 

 -19.32 159.67 42.52 193.35 376.22 376.22  -19.75 159.64 42.64 193.69 376.22 376.22

 10.23 76.67 20.86 104.92 212.68 212.68  10.42 76.68 21.04 104.55 212.68 212.68

Xv Xv 10.64 268.02 53.30 331.44 663.40   10.64 268.02 53.30 331.44 663.40  

v v 10.64 268.02 53.30 331.44  663.40 10.64 268.02 53.30 331.44  663.40

Table 13  KM and GRAS results for updating the data set from Table 10 

KM X Xu u X Xu u      GRAS       
 21.23 31.13 -10.58 32.72 74.50 74.50  19.01 32.22 -10.46 33.72 74.50 74.50 

 -21.26 159.83 42.58 195.06 376.22 376.22  -19.08 158.88 42.19 194.23 376.22 376.22

 10.67 77.06 21.30 103.65 212.68 212.68  10.71 76.92 21.56 103.48 212.68 212.68

Xv Xv 10.64 268.02 53.30 331.44 663.40   10.64 268.02 53.30 331.44 663.40  

v v 10.64 268.02 53.30 331.44  663.40 10.64 268.02 53.30 331.44  663.40

Table 14  WSD and iWSD results for the doubled marginal totals from Table 10 

WSD X Xu u2 X Xu u2      iWSD       

 -16.22 86.70 -31.12 109.64 149.00 149.00  37.73 66.55 -23.92 68.64 149.00 149.00

 24.64 285.56 99.74 342.50 752.44 752.44  -40.11 317.21 85.36 389.98 752.44 752.44

 12.87 163.79 37.97 210.73 425.36 425.36  23.66 152.28 45.17 204.26 425.36 425.36

Xv Xv 21.28 536.04 106.60 662.88 1326.80   21.28 536.04 106.60 662.88 1326.80  

v2 v 21.28 536.04 106.60 662.88  1326.80 2 21.28 536.04 106.60 662.88  1326.80

Table 15  WSRD and iWSRD results for the doubled marginal totals from Table 10 

WSRD X Xu u2 X Xu u2      iWSRD       

 28.39 61.93 -5.86 64.54 149.00 149.00  39.94 63.41 -20.75 66.40 149.00 149.00

 -18.35 320.93 79.30 370.57 752.44 752.44  -39.49 319.27 85.28 387.38 752.44 752.44

 11.25 153.18 33.16 227.78 425.36 425.36  20.83 153.35 42.07 209.10 425.36 425.36

Xv Xv 21.28 536.04 106.60 662.88 1326.80   21.28 536.04 106.60 662.88 1326.80  

v2 v 21.28 536.04 106.60 662.88  1326.80 2 21.28 536.04 106.60 662.88  1326.80

Table 16  KM and GRAS results for the doubled marginal totals from Table 10 

KM X Xu u2 X Xu u2      GRAS       

 42.46 62.26 -21.17 65.45 149.00 149.00  23.37 64.32 -5.94 67.25 149.00 149.00

 -42.51 319.66 85.17 390.13 752.44 752.44  -15.73 312.83 73.26 382.07 752.44 752.44

 21.33 154.12 42.60 207.31 425.36 425.36  13.63 158.89 39.28 213.56 425.36 425.36

Xv Xv 21.28 536.04 106.60 662.88 1326.80   21.28 536.04 106.60 662.88 1326.80  

v2 v 21.28 536.04 106.60 662.88  1326.80 2 21.28 536.04 106.60 662.88  1326.80

The final numerical example is assigned to verify a response of GRAS method to 

homothetic testing at k = 2 and k = 10 (see Table 17). It is easy to see that the GRAS target 

matrices do distinct from 2A and 10A very significantly. For instance, 202 13 a

2a 86.1621

 and 

 whereas  and 4021  62.513 x x 10013. In turn, at k = 10 we have 10 a

10a 13.621

 and 

 whereas  and 20021  14.113 x x . Moreover, there are some other large 

distinctions in the columns where the negative entries are located, namely, columns 1 and 3. 
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Table 17  GRAS homothetic test results for the data set from Table 10 at k = 2 and 10 

GRAS AX 2 Xu X 10    
Au2  GRAS A    Xu

Au10 

 24.38 68.63 -5.62 72.61 160.00 160.00  70.57 354.96 -1.14 375.61 800.00 800.00

 -16.86 298.60 69.22 369.04 720.00 720.00  -6.13 1467.62 324.41 1814.09 3600.00 3600.00

 12.48 148.77 36.40 202.34 400.00 400.00  35.56 757.42 176.73 1030.30 2000.00 2000.00

Xv Xv 100.00 2580.00 500.00 3220.00 6400.00   20.00 516.00 100.00 644.00 1280.00  

Av2 Av 20.00 516.00 100.00 644.00  1280.00 10 100.00 2580.00 500.00 3220.00  6400.00

Finally, it is to be emphasized that a homothetic paradigm expresses the important and 

helpful property of any matrix updating method. Moreover, positive response to homothetic 

testing serves as an additional evidence of plausibility and correctness of the method tested. 

Homothetic paradigm leans on a common notion of orthogonal projecting that is likely to 

be the most powerful concept in econometrics. It has an obvious logical interpretation, inter alia, 

corresponds to famous principle of insufficient reason (also known in decision theory as Laplace 

criterion), and remains operational in a row of practical situations. 

If a method of matrix updating emanates from some distance minimization problem, it can 

be fully adapted to homothetic testing. If at the same time a zero preservation property is 

assumed desirable, the method can be slightly redeveloped to provide it by reducing the 

dimensionalities of underlying minimization problem without its reformulation. 

One can assert that improved WSRD method has a variety of advantages among the other 

methods of matrix updating under this study because of its evident logical framework and 

operational flexibility. 
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